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The e!ects of large vibration amplitudes on the "rst and second coupled
radial-circumferential mode shapes of isotropic circular cylindrical shells of in"nite length are
examined. A theoretical model based on Hamilton's principle and spectral analysis developed
previously for clamped}clamped beams and fully clamped rectangular plates is extended to
shell type structures, reducing the large-amplitude free vibration problem to the solution of
a set of non-linear algebraic equations. The transverse and circumferential displacements are
assumed to be harmonic and expanded in the form of a "nite series of functions. The
Donnel}Mushtarie shell theory, taking into account the coupling between extensional and
#exural deformations is used. Then, the non-linear deformation energy is expressed by taking
into account the non-linear term due to the considerable stretching of the middle surface of the
shell induced by large de#ections. Tables of numerical results are given for the "rst and second
non-linear modes, for a wide range of the vibration amplitude, which may be used for
engineering purposes. For each value of the vibration amplitude considered, the
corresponding contributions of the basic functions de"ning the non-linear transverse and
circumferential displacement shapes are given, with the corresponding non-linear frequencies.
Selected plots of mode shapes and bending stress distributions are presented, with an extensive
discussion of the e!ects of non-linearity on the dynamic behaviour of shells.
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1. INTRODUCTION

The dynamic characteristics of circular cylindrical shells are of practical importance in
many branches of engineering, including aerospace engineering and transport vehicle
0022-460X/00/200917#27 $35.00/0 ( 2000 Academic Press
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design, because of their extensive use in aircraft, commercial vehicles and road tankers.
Knowledge of these characteristics is necessary for ensuring the structural integrity of the
vehicle and estimating the fatigue life of the structure [1]. Finite circular cylinders are
commonly used as ultrasonic transducers and resonators; the natural frequency spectrum of
such cylinders has to be calculated accurately for practical purposes [2]. Arnold and
Warburton initially presented the widely used equation of motion of thin, unsti!ened
cylindrical shells by making use of Lagrange's equations with appropriate strain and kinetic
energy expressions [3, 4]. This work was con"ned to cylindrical shells with clamped ends.
Coupry presented a theoretical and experimental study in which a simpli"ed formula,
applicable in most cases, was developed in order to determine simply the vibratory
characteristics of thin cylinders [5]. The free vibration of laminated orthotropic simply
supported cylindrical shells has been investigated by Dong [6] and Donnell-type
displacement equations of equilibrium, and the natural frequencies have been obtained by
an iterative procedure. Bert et al. determined the free vibration characteristics of thin-walled
cylindrical shells with layers made of an arbitrarily laminated anisotropic elastic material
[7]. Subsequently, Warburton and Higgs have extended their work and have used an
energy method in conjunction with the Raleigh}Ritz technique to determine the natural
frequencies of clamped}free cantilevered cylindrical shells [8]. A universal formula based
on Lagrange's equations has been developed by Au}Yang for predicting the natural
frequencies, both in air and in a #uid, of thin-walled cylinders and cylindrical panels with
either simply supported or clamped boundary conditions [9]. Mayers and Wrenn studied
the in#uence of non-linear e!ects on the free vibration of thin circular cylindrical shells by
using both the Karman}Donnell theory and a modi"ed set of the Senders strain
displacement relation, in which an approximate solution has been obtained by means of the
direct variational approach for large and small number of circumferential waves [10].
A series of references on the non-linear characteristics of large vibration amplitudes of
cylindrical shells covering a period of time from 1961 to 1979 is given in a paper of Ueda
[11]. An overview of the subject of non-linear vibration of plates and shells has been given
by Leissa [12], who suggested that the main di$culty lies in the solution of the governing
equations of motion, which are coupled non-linear di!erential equations. Tedesco et al.
have developed an analytical procedure which accurately predicts the natural frequencies
and radial mode shapes, based on the numerical investigation of the free vibration of
cylindrical shells [13]. This procedure has been applied to a cylindrical tank uniformly
attached to a rigid base, with or without a top closure. Thick shells of revolution have been
analysed for their axisymmetric vibration behaviour using the theory proposed in [14].
The solution of the problem has been obtained by using a higher order axisymmetric
"nite element. The asymptotic method has been applied by Koga and Kodama to the free
vibration of a circular cylindrical shell under a uniform pressure [15]. This study has led to
a simple formula for a natural frequency, which is valid for all possible combinations of the
boundary conditions characterizing simply supported, clamped and free ends. Theoretical
and experimental investigations of the vibration characteristics of thin-walled ring-sti!ened
circular cylinders have been presented in reference [16]. The theoretical investigation was
based also on the "nite element method and compared with experimental results. The Ritz
minimum energy approach was applied to study the free vibration of a doubly-tapered
cylindrical shallow shell [17]. The same method was employed to examine the natural
frequency and vibratory characteristics of doubly curved shallow shells [18]. The Ritz
method was further applied by Liew et al. in a series of papers, to study free vibration of
cantilevered cylindrical shells [19], solid cylinders [20], elastic solids [21], hollow cylinders
[22] and elliptical bars [23]. The variational principle has been used to study the free
vibration of a structure consisting of a "nite cylindrical shell closed at the end by a circular
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plate [24]. The eigenvalue equation was resolved by the Rayleigh}Ritz method. Kobayashi
and Leissa have derived the governing equations for non-linear vibration of a doubly
curved thick shallow shell based upon the "rst order shear deformation theory and
Galerkin's procedure [25]. Recently, a excellent survey on vibration of shallow shells has
been reported by Liew et al. [26] which summarizes papers published up to 1996.

We can conclude from this brief literature survey that in spite of considerable research, no
exact solution for the complicated problem of non-linear vibrations of shells is available
which may allow all, or at least most, of the known non-linear e!ects to be described in
a uni"ed manner. In particular, in most of the non-linear theoretical studies, the single-
mode solution has been assumed (see, e.g., references 8, 11, 25]). This assumption has been
shown both theoretically and experimentally to be inaccurate for beams in references
[27, 28], and for homogeneous and laminated plates in reference [29]. A theoretical model
based on Hamilton's principle and spectral analysis was developed by Benamar et al. in
order to adapt the Rayleigh}Ritz linear eigenvalue problem to non-linear problems of thin
straight structures [30]. This model was applied to simply supported and fully clamped
beams and extended to rectangular isotropic and laminated plates [31, 32]. The purpose of
the present paper is to extend this model to shell-type structures, using a multi-mode
approach, to investigate the e!ects of non-linearity on shell dynamic behaviour at large
vibration amplitudes. In this paper, which is Part I of a series of papers concerned with
non-linear vibration of shells, the case of a circular cylindrical shell of in"nite length is
examined using a simple mathematical model based on the plane strain assumption [33]
and a multi-mode approach. The results obtained using such a model can apply to
a cylindrical shell, su$ciently long so that the distance between its longitudinal nodes is
much greater than its radius, and consequently, the boundary conditions at the ends of the
cylinder do not signi"cantly in#uence the solution. Harmonic motion was assumed and the
transverse and circumferential displacements have been expanded in the form a series of
basic functions. After discretization, an expression has been derived for the strain energy at
large transverse and circumferential vibration amplitudes. In this expression, in addition to
the classical mass and rigidity tensors associate with transverse and circumferential vibrations,
2 third order tensors and 1 fourth order tensor appeared due to the non-linearity. This fact
makes the shell problem formulation more complicated compared with the plate case, in which
only a fourth order tensor appears due to the non-linearity [27}32]. The dynamic variational
problem obtained by applying Hamilton's principle is transformed into a static case by
integrating the time functions over a period of vibration (see details below). Minimization of the
energy functional with respect to the transverse and circumferential basic functions
contributions has led to two coupled sets of non-linear algebraic equations, which have been
solved numerically in each case, leading to the "rst and second non-linear coupled transverse
and circumferential mode shapes, each mode being given as a function of the maximum
transverse and circumferential amplitude of vibration and the corresponding frequency. The
results obtained via the above model, are discussed and compared with those from previous
studies. Also, plots of the mode shapes and the associated bending stress distributions
obtained at large vibration amplitudes are given, showing a higher rate of increase of stresses
with vibration amplitude, compared with that predicted in the linear theory.

2. ANALYTICAL FORMULATION

2.1. PROBLEM DEFINITION

The co-ordinate system and diagram illustrating the parameters used in the model are
shown in Figure 1. The structure consists of a circular cylindrical shell with radius and



Figure 1. Schematic diagram of a circular cylindrical shell.
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thickness denoted as R and h. The shell is composed of an elastic, homogenous isotropic
material, and is assumed to be thin, that is, its wall thickness is less than 10% of its radius
[9]. The shell motion is represented by < and =, which are the displacements in the
tangential and radial directions respectively.

Rotary inertia and shear deformation are neglected, and, there is no external load applied
to the shell. Therefore, the conventional assumptions of the Donnel}Mushtarie shell theory
are adopted. The concept of strain plane is considered in this study. It is assumed that there
is no motion in the longitudinal direction of the shell, and that the physical quantities
(displacement, membrane forces, bending moments, etc.) do not depend upon location
along the length. Taking into account these assumptions, the strain}displacement
relationships can be written as

e
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where e0
i
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2.2. THE BENDING STRAIN, AXIAL STRAIN AND KINETIC ENERGIES OF A SHELL

The total strain energy, <, of the shell described above is composed of the membrane
energy <

m
and the bending strain energy <

b
,

<"<
m
#<

b
. (4)

The membrane strain energy is caused by the stretching e!ects of the mid-surface of the
shell. The strain energy components have been deduced from the general expression given in
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reference [34] as
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in which D is the #exural rigidity D"Eh3/12 (1!l2), E is Young's modulus, l is Poisson's
ratio, and D is the Laplacian operator de"ned as (L2/Lx2#L2/Ly2).

Substituting equations (2) and (3) into equations (5) and (4), we "nd the total energy
expression:
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and the kinetic energy is given by
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where o is the mass per unit volume.

2.3. DISCRETIZATION OF THE TOTAL STRAIN AND KINETIC ENERGY EXPRESSIONS

If the time and space functions are supposed to be separable and harmonic motion is
assumed, the circumferential and transverse displacement functions can be written as

<(y, t)"< (y) cosut,

=(y, t)"= (y) cosut. (8)

Using a multi-mode approach, <(y) and=(y) are expanded in the form of "nite series as
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(y), (9)

in which the usual summation convention is used, according to which summation is made
for the repeated indices i and j over the range [1, n].

Discretization of the total strain energy and the kinetic energy expressions is achieved by
substituting equation (9) into equations (6) and (7), and rearranging. We then obtain the
following relationship:
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where b
ijkl

, and b1
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and b2
ijk

are a fourth order and 2 three order non-linearity tensors, and
k1
ij
, k2

ij
and k3

ij
are the rigidity tensors, associated with<,= and the coupling between< and

= respectively. The vibration parameters are given by the following expressions:

b
ijkl

"

12D

h2 P
nR

0

1

4

L=
i

Ly

L=
j

Ly

L=
k

Ly

L=
l

Ly
dy,

b1
ijk
"

12D

h2R P
2nR

0

L=
i

Ly
=

k
dy,

b2
ijk
"

12D

h2 P
2nR

0

L=
i

Ly

L=
j

Ly

L<
k

Ly
dy,

k1
ij
"

12D

h2 P
2nR

0

L<
i

Ly

L<
j

Ly
dy,

k2
ij
"

12D

h2 P
2nR

0
C
=

i
=

j
R2

#

h2

12

L2=
i

Ly2

L=
j

Ly2Ddy,

k3
ij
"

12D

h2R P
2nR

0

2=
i

L<
i

Ly
dy. (11)

The discretized expression for the kinetic energy is obtained by substituting equations (9)
into equation (7), which leads to
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in which m1
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are the mass tensors associated with < and= respectively, given by

m1
ij
"ohR P

2nR

0

<
i
<

j
dy,

m2
ij
"ohR P

2nR

0

=
i
=

j
dy. (13)

2.4. FORMULATION OF GOVERNING EQUATIONS

The dynamic behaviour of the structure is governed by Hamilton's principle, which is
symbolically written as

dP
t2

t1

(<!¹ )"0. (14)

After replacing< and ¹ by their discretized expressions in equation (14), the time functions
have to be integrated. The range of integration was chosen equal to [0, n/2u] which
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corresponds to a quarter of a period of motion. This choice was made in order to avoid
obtaining zero as the coe$cient of the terms involving the third order tensors b1

ijk
and b2

ijk
, as

would have happened if the range of integration was [0, n/u] or [0, 2n/u]. The variational
problem reduces to dU"0, in which U is a function of the undetermined coe$cients B
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The problem is to "nd the minimum of the function U with respect to the unknown
coe$cients B

i
and C

i
representing the contribution of the chosen basic functions to the

circumferential and transverse displacements < and =, respectively. This is obtained by
writing
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This is a set of 2n non-linear algebraic equations which has to be solved numerically in
order to obtain the non-linear free response of the shell at large vibration amplitudes.

2.5. BENDING, AXIAL AND TOTAL STRESS EXPRESSIONS

By using the classical thin shell assumption of plane strain and Hooke's law, the
maximum total stress can be obtained for the external circumference of the cylinder, i.e.,
z"h/2, as

p
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where p
yya

is the axial stress given by
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is the maximum bending stress given by
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3. DISCUSSION OF THE NUMERICAL MODEL AND NON-DIMENSIONAL
FORMULATION

3.1. DISCUSSION OF THE NUMERICAL MODEL

Equation (18) represent a set of 2n non-linear equations relating the n coe$cients B
i
, the

n coe$cients C
i
and the frequency u. So we have (2n#1) unknowns and 2n equations. In

order to complete the formulation, a further equation has to be added to equation (18). As
no dissipation is considered here, such an equation can be obtained by applying the
principle of conservation of energy, which can be written as
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is the maximum value of the strain energy obtained from equation (10) for t"0,
at which ¹"0, and ¹
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is the maximum value of kinetic energy obtained from equation

(12) for t"n/2u, at which <"0. Equation (22) leads to the following expression for u2:
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which has to be substituted into equations (18) to obtain a system of non-linear algebraic
equations whose solution leads to the n contribution coe$cients B

i
, i"1,2, n,

corresponding to the circumferential displacement<, and the n contribution coe$cients C
i
,

i"1}n, corresponding to the transverse displacement=.
Adapting the solution procedure used in references [28}32], the technique adopted in the

present work was to solve equations (18) assuming a given value C
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of the contribution
coe$cient of the function=
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in order to determine the contribution coe$cients C
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(i"1}n), obtained by solving equations (18) can be substituted into

equation (23) to obtain the corresponding value of u2
s0
. Such a procedure, starting by "xing

C
s0
, leads to a coupled transverse circumferential mode, which is = dominant. A similar

procedure can be adopted when "xing the contribution coe$cients B
r0

in order to obtain
the corresponding non-linear mode, which would be in this case < dominant, with the
associated non-linear frequency. Because of the coupling between the shell circumferential
and radial displacements, a given shell mode shape is composed of a given function for the
radial displacements= together, with the corresponding function for the circumferential
displacements <. From a study of linear results obtained previously [33, pp. 41}43], and
numerical results obtained here for the non-linear case, it can be seen that the radial and
circumferential displacement functions corresponding to a given mode have the same
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wavenumber n. However, for a given value of the wavenumber n, there are two associated
modes, de"ned by two frequencies and two values of the amplitude ratio, i.e., C/B. For
example, for the apparent "rst mode there are two modes, de"ned by two frequencies,
designated in the remainder of this paper as the lowest and the highest frequency as in
reference [33, p. 44], for which the amplitude ratios of the corresponding= and< functions
are !1 and #1 respectively. So, in this case, the modes cannot be said to be predominately
circumferential or radial in nature. But when the mode order increases, the ratio of the
= and < function amplitudes C/B, corresponding to the lowest frequency, decreases,
leading to a shell mode shape which is predominately radial. But the ratio of the= and
< function amplitudes, corresponding to the highest frequency, increases, leading to a shell
mode shape which is predominately circumferential. As will be shown later, the numerical
results obtained here in the non-linear case, are both qualitatively and quantitatively in very
good agreement with the shell mode shape behaviour, described above, known in linear
theory.

3.2. NON-DIMENSIONAL FORMULATION

To simplify the analysis and the numerical treatment of the set of non-linear algebraic
equations, non-dimensional formulation has been considered by putting the displacement
functions as
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where y*"y/R is the non-dimensional co-ordinate. Equation (18) can be rewritten in
non-dimensional form as
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where u* is the non-dimensional non-linear frequency parameter de"ned by
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in which u*2 is given by the following expression:
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The non-dimensional tensors are de"ned by
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<*

i
and=*

i
. Also, it should be noticed that the non-linear frequency parameter u* does not

depend on the Poisson ratio, since none of the parameters b*
ijkl

, b1*
ijk

, b2*
ijk

, k1*
ij

, k2*
ij

, k3*
ij

, m1*
ij

and m2*
ij

is a function of l, but the non-linear frequency itself depends in all cases on l, via
the shell bending sti!ness D"Eh3/12(1!l2), as shown in equation (26).

In terms of the non-dimensional parameters de"ned in the previous equations, non-
dimensional axial, bending and total stresses p*

yya
, p*

yyb
and p*

yyt
can be de"ned respectively,

by

p*
yya

"CbA
L<*

Ly*
#

=*

R B#
b2

2 A
L=*

Ly* B
2

D, (30)

p*
yyb

"!

b2

2 C
L2=*

Ly*2 D (31)
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and

p
yyt

"p
yya

#p
yyb

. (32)

The relationships between the dimensional and the non-dimensional stresses are

p
a,b !/$ t

"

E(1!l)
(1#l) (1!2l)

p*
a,b !/$ t

(33)

In the case of plain strain, the equations describing the free vibrations of cylindrical shells
admit solutions which are independent of the axial co-ordinate x* and may be expanded in
the form of "nite series as follows:

;*(y*, t)"0,

<*(y*, t)"(B
i
/h)sin (iy*)cos (ut),

=*(y*, t)"(C
i
/h)cos ( jy*)cos (ut), (34)

in which the usual summation assumption is assumed.
Equations (34) were substituted in a FORTRAN program for studying the

non-linear dynamic behaviour of an in"nitely long circular cylindrical shell as previously
discussed.

4. NUMERICAL RESULTS AND DISCUSSION

4.1. NUMERICAL DETAILS

It appears clearly from the set of non-linear algebraic equations (25) that the radial and
circumferential displacements are coupled via the second order tensor k2*

ij
and the third

order tensor b2*
ijk

. These equations have been solved numerically using the Harwell library
routine NS01A. This routine is based on a hybrid iteration method combining the step
descent and Newton's methods which do not require a very good initial estimate of the
solution [35]. A step procedure, similar to that described in references [29}31] for beams
and plates, was adopted for ensuring rapid convergence when varying the amplitude, which
allowed solutions to be obtained with quite a small number of iterations (an average of 100
for 12 equations). So, to obtain the lowest frequency parameter corresponding to the
predominately transverse sth non-linear mode shape, the "rst calculation was done in
the neighbourhood of the linear solution by attributing a small numerical value to the
coe$cient C

s
of the basic function =*

s
. The resulting solution was used as an initial

estimate for the following step corresponding to C#DC. Thus, by choosing in each case the
convenient value of the step DC, the sth non-linear coupled radial-circumferential mode
shape, for which the motion is primarily transverse, has been calculated at various
maximum vibration amplitude to shell thickness ratios extending up to a given value. The
same procedure was applied to obtain the highest frequency parameter corresponding
to a motion which is predominately circumferential. So, the rth non-linear mode shape
was calculated by attributing a small numerical value to the coe$cient B

r
of the basic

function <*
r
.
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4.2. CONVERGENCE OF THE SPECTRAL EXPANSION

A step procedure, similar to that described above, was used to cover the desired range of
amplitudes. The limit of error residuals was imposed to be lower than 10~16 in all cases. To
obtain the fundamental and second non-linear mode shapes of the shell considered above,
the "rst 12 basic functions (w*

1
, w*

2
,2,w*

12
) associated with the transverse displacement=*

and 12 basic functions (v*
1
, v*

2
,2, v*

12
) associated with the circumferential displacement <*

were used in the series expansions (34), which leads to the solution of 23 non-linear algebraic
equations.

Typical values of the coe$cients C
i
and B

i
are given in Table I (as an example) for the

lowest second mode. It can be seen that the only signi"cant contributions, as may be
expected due to the symmetry of the shell second mode shape, are those corresponding to
the basic functions =*(y*)"(C

i
/h)cos (iy*) and <*(y*)"(B

i
/h)sin (iy*), in which i is an

odd number for the second mode. To check that the addition of symmetric functions does
not a!ect the results, calculations were made with only six functions for =* and six
functions for <* representing the shape of each mode considered. The results show no
signi"cant change in both the value of the resonance frequencies and the basic function
contributions. So the conclusion has been reached that good estimates of the non-linear
mode shapes can be obtained by solving only 11 equations corresponding to 12 well chose
basic functions for = and <.
TABLE 1

¸owest second non-linear mode shape when the motion is predominately transverse, for
b"0)05. ¹ypical numerical results obtained with 23 basic functions

=*
max

0)02766874 0)62406954 1)28088628

u*
nl
/u*

l
1)002283 2)04357 3)147069

C
2

0)50000000E!05 1)3000000000 2)5500000000
C

1
!0.13792493E!05 !0.23615902E!13 !0.23042550E!13

C
3

0.10415065E!06 0.15919448E!13 0.12312677E!13
C

4
!0.59071467E!03 !0.23994920E#00 !0.38325542E#00

C
5

0)68004758E!08 !0)59431545E!14 !0)53068146E!14
C

6
0)86744433E!05 0)69523074E!01 0)17056876E#00

C
7

!0.19261279E!09 0)27232039E!14 0)34736108E!14
C

8
!0.14127602E!06 !0.23127118E!01 !0)70534312E!01

C
9

!0)20345207E!09 !1)13134491E!14 !0)21023490E!14
C

10
0)23176058E!08 0)82245200E!02 0)33834075E!01

C
11

0)30596649E!09 0)61410704E!15 0)13077928E!14
C

12
0)20926962E!09 !0)30620594E!02 !0)17174141E!01

B
1

0)13798122E!05 0)23633729E!13 0)22892653E!13
B
2

!0)25016762E!01 !0)65181445E#00 !0)12834731E#01
B
3

!0)34631815E!07 !0)51816889E!14 !0)38651361E!14
B
4

0)14021889E!03 0)54967182E!01 0)76477320E!01
B
5

!0)15464522E!08 0)99580161E!15 0)75988544E!15
B
6

!1)12100725E!05 !0)91002461E!02 !0)20642792E!01
B
7

0)32992351E!09 !0)27727641E-15 !0)31175795E!15
B
8

0)11555313E!07 0)17349761E!02 0)40335935E!02
B
9

!0)45226507E!10 0)91329420E!16 0)11809233E!15
B
10

!0)52934915E!09 !0)29485056E!03 !0)72168979E!02
B
11

!0)11630189E!11 !0)36275615E!16 !0)53893769E!16
B
12

!0)23193377E!09 0)16512369E!04 !0)12240708E!03
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4.3. COMPARISON WITH LINEAR RESULTS

In order to validate the theory and the numerical results obtained in the present work,
comparison is made in this section between results obtained here from the non-linear model
when the vibration amplitudes considered are very small and data from other analyses: (a)
previous results from a linear analysis corresponding to in"nitely long cylindrical shells [33,
pp. 41, 39], (b) results obtained from the general model developed here when the non-
linearity tensors b*1

ijk
, b*2

ijk
and b*

ijkl
are neglected, and (c) previous results of linear analyses

corresponding to very long cylindrical shells with various boundary conditions, the shells
being considered long enough to allow comparison to be made with present work
[33, pp. 43, 47, 59).

Tables 2}4 show a comparison of numerical results obtained from the solution of the set of
non-linear algebraic equations (25), corresponding to the non-linear problem, obtained for
TABLE 3

Comparison of vibration amplitude ratios, for small amplitudes and various mode orders, with
previous linear results for coupled radial}circumferential modes: (a) values computed from
equation (2.32) published in reference [33, p. 43] in the linear case, (b) values obtained from
solution of the set of linear algebraic equations of the present work, when the non-linear tensors
b*
ijkl

, b*1
ijk

and b*2
ijk

are omitted, (c) values obtianed from solution of the set of non-linear algebraic
equation (25) of the present analysis, (d) values transferred from table (2.11) of reference
[33, p. 39] according to FluK gge1s linear theory for long simply supported shell (¸/mR"100,

with m"1)

b"0)05 Mode order (a) (b) (c) (d)

Amplitude ratios First 0)99989 1)00000 1)00000 *

(B/C)
r0

for the
highest frequency

Second 1)99864 1)99867 1)99867 *

Amplitude ratios First !1)00000 !1)00000 !0)99990 1)03268
(B/C)

s0
for the

lowest frequency
Second !0)50005 !0)50000 !0)50000 0)504356

TABLE 2

Comparison of non-dimensional frequency parameters of the coupled radial}circumferential
modes, obtained here for small amplitudes, with previous linear results, for various mode orders:
(a) values published in reference [33, p. 41] or calculated from equation (12-10) of reference [33,
p. 39], (b) values obtained from solution of the set of linear algebraic equations of the present
work, when the non-linear tensors b*

ijkl
, b*1

ijk
and b*2

ijk
are omitted, (c) values obtained from

solution of the set of non-linear algebraic equations (25) of the present analysis, (d) values
published in reference [33, pp. 47, 59] according to FluK gge1s linear theory for a very long shell

(¸/mR"100, with m"1) supported at both ends by shear diaphragm (SD-SD)

b"0)05 Mode order (a) (b) (c) (d)

Highest First 1)41425 1)41425 1)41425 1)41440
Frequency u*

c
Second 2)23622 2)23622 2)23622 2)23628

Lowest First 1)02062E!02 1)02062E!02 1)02151E!02 *

Frequency u*
r

Second 5)16417E!02 5)16363E!02 5)17537E!02 *



TABLE 4

Comparison of non-dimensional lowest frequency parameters obtained here for small amplitudes and various thickness/radius ratios with previous
linear results; (a) values computed from equation (2.31) published in reference [33, p. 39] for the linear case, (b) values obtained from sloution of the

set of non-linear algebraic equations (25) of the present analysis for C
s0
"0)05; s

0
"1, 2 according to the ,rst and second modes

b"h/R 0)001 0)01 0)02 0)03 0)04 0)05

First mode
(a) u*

l
0)204124E!03 2)041231E!03 4)082482E!03 6)123723E!03 8)164965E!03 10)206200E!03

(b) u*
nl

0)204307E!03 2)043066E!03 4)086119E!03 6)129146E!03 8)172135E!03 10)215070E!03

Second mode
(a) u*

l
1)032795E!03 10)327962E!03 20)656035E!03 30)984285E!03 41)312819E!03 51)641715E!03

(b) u*
nl

1)033720E!03 10)333126E!03 20)674144E!03 31)001515E!03 41)346983E!03 51)753650E!03

930
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S
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¹
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¸

.
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small vibrations amplitudes, with previous results of linear analyses. The highest frequency
u*

c
and the lowest frequency u*

r
corresponding to the "rst and second modes are presented

in Table 2 for a thickness to radius ratio b equal to 0)05. The amplitude ratios (B/C)
r0

corresponding to these modes are indicated in Table 3 for the same parameters. Results in
column (a) of Table 2 are taken from Table (2.2) published in reference [33, pp. 41] or
calculated from equation (2.31) given in references [33}35]. Results in column (d) are
transferred from Table (2.10) of reference [33, pp. 47, 49], obtained by solution of the linear
characteristic equation according to the FluK gge theory for a very long circular cylindrical
shell having a length to radius ratio equal to 100, supported by shear diapharagrams
(SD}SD) at both ends. Results in column (a) of Table 3 are obtained from equation (2.32)
presented in reference [33, p. 43]. Results in column (d) of Table 3 are transferred from
Table (2.11) of reference [33, p. 39] according to the FluK gge theory for a very long simply
supported shell for which ¸/mR"20. The results from references [33, pp. 39, 47, 59] have
been obtained by the solution of the set of di!erential equations of the linear problem
corresponding to a circular cylindrical shell of in"nite length, according to the
Donnel}Mushtarie theory. Results in column (b) of Tables 2 and 3 were obtained from the
solution of the set of linear algebraic equations obtained in the present work, with the
non-linear tensors b*

ijkl
, b*1

ijk
and b*2

ijk
omitted. Results in columns (c) of Tables 2 and 3 are

obtained from the solution of the set of non-linear algebraic equations of the present
analysis for small amplitudes (B

r0
"0)05 in the case of the highest frequency, and C

s0
"0)05

in the case of the lowest frequency with r
0
"1, 2 and s

0
"1, 2). It can be seen from all the

comparisons mentioned above that both resonance frequencies and amplitude ratios of the
coupled transverse}circumferencial mode, obtained from the present non-linear analysis at
small vibration amplitudes, are very close to those obtained from linear analyses of the
previous studies. Moreover, the agreement between the two sets of results, according to
lowest frequency, computed in the linear case (column (a)) and in the non-linear case
(column (c)) is very good. Indeed, for most cases, the results agree within 1%. The same
observation can be made for amplitude ratio results. It is worth noting here, from the
numerical methods point of view, that a classical eigenvalue problem, solved usually by
using classical numerical methods, such as Jacobi's method, appears here, as has been
pointed out in previous non-linear studies [28}31], as a limit of a non-linear problem,
described by a set of non-linear algebraic equations, the solution of which tends to the
eigenvalue problem solution when the displacement amplitude tends to zero. In Table 4, the
non-linear lowest frequency parameters of the "rst and second mode shapes obtained here
for small amplitudes C

1
"0)05 and C

2
"0)05 are compared with those obtained from

a previous linear analysis in reference [33, p. 39] for various shell thickness to radius ratios,
and good agreement can be seen.

4.4. COMPARISON WITH THE NON-LINEAR RESULTS OF THE SINGLE-MODE APPROACH

In order to estimate the accuracy of the non-linear numerical results obtained in the
present work, a comparison has been made in Figure 2 between the fundamental non-linear
mode found by Chu [36] when ¸/RPR and that derived here. Unfortunately, the results
available in the shell vibration literature are based on the single-mode approach. So,
although various techniques have been used, as discussed in the introduction, no results
were found for the coe$cient contribution dependence of the mode shapes. Consequently,
the comparison was restricted to the amplitude dependence of the resonance frequency
associated with the fundamental non-linear mode. Good agreement can be seen between the
curve of results obtained in this analysis for the fundamental non-linear mode and Chu's



Figure 2. E!ects of large vibration amplitudes on the frequencies of the lowest "rst and second modes.
Comparison with previous non-linear studies.
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data (Figure 2). This agreement is due to the values of coe$cient contributions, obtained by
the present analysis, C

3
, C

5
, C

7
, C

9
, C

11
, B

1
, B

3
, B

5
, B

7
, B

9
and B

11
(see Tables 5(a)}(b) and

Figure 3) which are quite small for the "rst mode. Although the contribution coe$cients are
relatively small, their e!ects on the non-linear stresses may be quite important, as will be
discussed below. As may be expected, due to higher tensile forces induced by the second
mode, the coe$cient contributions C

4
, C

6
, C

8
, C

10
, C

12
, B

2
, B

4
, B

6
, B

8
, B

10
and B

12
are

more important, showing non-linearity e!ects, which are greater than those obtained for the
fundamental non-linear mode. Also, it is interesting to note that these results present
a character of non-linearity of the hardening type (i.e., the frequency increases with
increasing vibration amplitude) as has been observed by Chu [36], Dowell and Ventres [33,
pp. 222}223] for large de#ections of a circular cylindrical shell for which ¸/RPR, and by
Mayer and Wrenn for long circular cylindrical shell [10].

4.5. GENERAL PRESENTATION OF NUMERICAL RESULTS

Numerical results for a circular cylindrical shell of in"nite length and having a thickness
to radius ratio b equal to 0)05 are summarized in Tables 5(a), (b) for the "rst and second
mode shapes. In Table 5(a), computed values of C

3
, C

5
, C

7
, C

9
, C

11
, B

1
, B

3
, B

5
, B

7
, B

9
and

B
11

corresponding to C
1

varying from 0)05 to 2 are given. Also in Table 5(b), computed
values of C

4
, C

6
, C

8
, C

10
, C

12
, B

2
, B

4
, B

6
, B

8
, B

10
and B

12
corresponding to C

2
varying from

0)05 to 2 are given. For each solution C
3
, C

5
, C

7
, C

9
, C

11
, B

1
, B

3
, B

5
, B

7
, B

9
and B

11
, and C

4
,

C
6
, C

8
, C

10
, C

12
, B

2
, B

4
, B

6
, B

8
, B

10
and B

12
, the corresponding value of lowest frequency



TABLE 5

Contribution coe.cients of transverse and circumferential basic functions corresponding to the lowest ,rst and second non-linear mode shapes of
a circular cylindrical shell of in,nite length having a thickness of radius ratio b"0)05

(a) First mode

u*
nl
/u*

l
C

1
C

3
C

5
C

7
C

9
C

11
B

1
B

3
B

5
B

7
B
9

B
11

1)00087 0)05 0)16683E!05 0)10759E!09 0)80983E!14 0)39655E!17 !0)9092E!17 !0)5000E!1 !0)55612E!6 !0)21519E!10 !0)11675E!14 0)2257E!17 !0)21138E!18

1)00799 0)15 0)44834E!04 0)25958E!07 0)17616E!10 0)12956E!13 0)13487E!16 !0)1500E#0 !0)14945E!4 !0)51915E!08 !0)25165E!11 !0)144E!14 !0)20949E!17

1)02206 0)25 0)20564E!03 0)32908E!06 0)61697E!09 0)12561E!11 0)26944E!14 !0)2500E#0 !0)68548E!4 !0)65817E!07 !0)88139E!10 !0)140E!12 !0)24656E!15

1)04275 0)35 0)55656E!03 0)17328E!05 0)63163E!08 0)24997E!10 0)10401E!12 !0)3500E#0 !0)18552E!3 !0)34657E!06 !0)90233E!09 !0)278E!11 !0)94581E!14

1)06960 0)45 0)11618E!02 0)59217E!05 0)35305E!07 0)22849E!09 0)15545E!11 !0)4501E#0 !0)38726E!3 !0)11843E!05 !0)50436E!08 !0)254E!10 !0)14132E!12

1)10207 0)55 0)20750E!02 0)15613E!04 0)13726E!06 0)13096E!08 0)13133E!10 !0)5501E#0 !0)69166E!3 !0)31225E!05 !0)19609E!07 !0)146E!09 !0)11939E!11

1)13960 0)65 0)33381E!02 0)34595E!04 0)41844E!06 0)54902E!08 0)75711E!10 !0)6501E#0 !0)11127E!2 !0)69189E!05 !0)59777E!07 !0)610E!09 !0)68828E!11

1)18162 0)75 0)49812E!02 0)67645E!04 0)10709E!05 0)18382E!07 0)33158E!09 !0)7501E#0 !0)16604E!2 !0)13529E!04 !0)15298E!06 !0)204E!08 !0)30144E!10

1)22758 0)85 0)70225E!02 0)12035E!03 0)24014E!05 0)51932E!07 0)11800E!08 !0)8501E#0 !0)23409E!2 !0)24070E!04 !0)34306E!06 !0)577E!08 !1)10727E!09

1)27698 0)95 0)94696E!02 0)19884E!03 0)48560E!05 0)12845E!06 0)35693E!08 !0)9502E#0 !0)31566E!2 !0)39769E!04 !0)69371E!06 !0)143E!07 !0)32448E!09

1)32937 1)05 0)12321E!01 0)30956E!03 0)90357E!05 0)28550E!06 0)94740E!08 !0)1050E#1 !0)41071E!2 !0)61912E!04 !0)12908E!05 !0)317E!07 !0)86128E!09

1)38435 1)15 0)15568E!01 0)45892E!03 0)15703E!04 0)58124E!06 0)22588E!07 !0)1150E#1 !0)51894E!2 !0)91784E!04 !0)22432E!05 !0)646E!07 !0)20535E!08

1)44157 1)25 0)19195E!01 0)65312E!03 0)25776E!04 0)10997E!05 0)49238E!07 !0)1250E#1 !0)63986E!2 !0)13063E!03 !0)36822E!05 !0)122E!06 !0)44762E!08

1)50074 1)35 0)23183E!01 0)89792E!03 0)40315E!04 0)19553E!05 0)99490E!07 !0)1350E#1 !0)77280E!2 !0)17958E!03 !0)57593E!05 !0)217E!06 !0)90446E!08

1)56160 1)45 0)27511E!01 0)11984E!02 0)60503E!04 0)32970E!05 0)18839E!06 !0)1450E#1 !0)91705E!2 !0)23969E!03 !0)86433E!05 !0)366E!06 !0)17126E!07

1)62395 1)55 0)32153E!01 0)15592E!02 0)87612E!04 0)53098E!05 0)33726E!06 !0)1550E#1 !0)10718E!1 !0)31183E!03 !0)12516E!04 !0)590E!06 !0)30660E!07

1)68759 1)65 0)47085E!01 0)19837E!02 0)12298E!03 0)82165E!05 0)57498E!06 !0)1651E#1 !0)12362E!1 !0)39674E!03 !0)17569E!04 !0)913E!06 !0)52271E!07

1)75237 1)75 0)42283E!01 0)24750E!02 0)16798E!03 0)12276E!04 0)93912E!06 !0)1751E#1 !0)14095E!1 !0)49500E!03 !0)23997E!04 !0)136E!05 !0)85374E!07

1)81816 1)85 0)47723E!01 0)30351E!02 0)22397E!03 0)17783E!04 0)14769E!05 !0)1851E#1 !0)15908E!1 !0)60703E!03 !0)31996E!04 !0)198E!05 !0)13426E!06

1)88485 1)95 0)53381E!01 0)36654E!02 0)29231E!03 0)25062E!04 0)22460E!05 !0)1951E#1 !0)17794E!1 !0)73309E!03 !0)41759E!04 !0)279E!05 !0)20418E!06

1)95233 2)05 0)59236E!01 0)43666E!02 0)37430E!03 0)34467E!04 0)33148E!05 !0)2051E#1 !0)19746E!1 !0)87333E!03 !0)53472E!04 !0)383E!05 !0)30134E!06
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TABLE 5 Continued
(b) Second mode

u*
nl
/u*

l
C

2
C

4
C

6
C

8
C

10
C

12
B

2
B

4
B

6
B

8
B
10

B
12

1)00217 0)05 !0)59066E!03 0)86744E!05 !0)14217E!06 0)25151E!08 !0)46707E!10 !0)25017E!1 0)14021E!03 !0)12101E!05 0)11789E!07 !0)10982E!09 0)62141E!12

1)02027 0)15 !0)52904E!02 0)23217E!03 !0)11384E!04 0)60252E!06 !0)33473E!07 !0)75052E!1 0)12555E!02 !0)32364E!04 0)94272E!06 !0)26252E!07 0)44234E!09

1)05605 0)25 !0)14551E!01 0)10559E!02 !0)85799E!04 0)75271E!05 !0)69298E!06 !0)12509E#0 0)34513E!02 !0)14697E!03 0)70873E!05 !0)32652E!06 0)90329E!08

1)10869 0)35 !0)28081E!01 0)28193E!02 !0)31793E!03 0)38717E!04 !0)49467E!05 !0)17514E#0 0)66550E!02 !0)39147E!03 0)26162E!04 !0)16686E!05 0)63141E!07

1)17685 0)45 !0)45421E!01 0)57706E!02 !0)82685E!03 0)12796E!03 !0)20767E!04 !0)22521E#0 0)10752E!01 !0)79871E!03 0)67694E!04 !0)54663E!05 0)25757E!06

1)25867 0)55 !0)65929E!01 0)10037E!01 !0)17316E!02 0)32259E!03 !0)63001E!04 !0)27529E#0 0)15581E!01 !0)13836E!02 0)14086E!03 !0)13631E!04 0)75293E!06

1)35171 0)65 !0)88809E!01 0)15609E!01 !0)31249E!02 0)67531E!03 !0)15291E!03 !0)32540E#0 0)20944E!01 !0)21411E!02 0)25231E!03 !0)28162E!04 0)17449E!05

1)45314 0)75 !0)11316E#00 0)22352E!01 !0)50538E!02 0)12327E!02 !0)31482E!03 !0)37553E#0 0)26617E!01 !0)30483E!02 0)40457E!03 !0)50625E!04 0)33963E!05

1)55997 0)85 !0)13810E#00 0)30038E!01 !0)75127E!02 0)20249E!02 !0)57115E!03 !0)42569E#0 0)32375E!01 !0)40701E!02 0)59573E!03 !0)81733E!04 0)57608E!05

1)66939 0)95 !0)16282E#00 0)38405E!01 !0)10452E!01 0)30614E!02 !0)93793E!03 !0)47588E#0 0)38020E!01 !0)51673E!02 0)82026E!03 !0)12121E!03 0)87368E!05

1)77915 1)05 !0)18670E#00 0)47200E!01 !0)13793E!01 0)43325E!02 !0)14228E!02 !0)52611E#0 0)43398E!01 !0)63035E!02 0)10706E!02 !0)16794E!03 0)12069E!04

1)88760 1)15 !0)20933E#00 0)56218E!01 !0)17450E!01 0)58157E!02 !0)20257E!02 !0)57637E#0 0)48404E!01 !0)74501E!02 0)13387E!02 !0)22031E!03 0)15388E!04

1)99374 1)25 !0)23048E#00 0)65303E!01 !0)21340E!01 0)74818E!02 !0)27406E!02 !0)62666E#0 0)52978E!01 !0)85868E!02 0)16168E!02 !0)27649E!03 0)18268E!04

2)09708 1)35 !0)25004E#00 0)74354E!01 !0)25388E!01 0)93007E!02 !0)35582E!02 !0)67698E#0 0)57096E!01 !0)97013E!02 0)18983E!02 !0)33473E!03 0)20270E!04

2)19746 1)45 !0)26801E#00 0)83311E!01 !0)29536E!01 0)11244E!01 !0)44679E!02 !0)72734E#0 0)60759E!01 !0)10787E!01 0)21777E!02 !0)39346E!03 0)20970E!04

2)29498 1)55 !0)28447E#00 0)92141E!01 !0)33734E!01 0)13287E!01 !0)54585E!02 !0)77773E#0 0)63984E!01 !0)11842E!01 0)24504E!02 !0)45138E!03 0)19974E!04

2)38985 1)65 !0)29951E#00 0)10083E#0 !0)37944E!01 0)15409E!01 !0)65196E!02 !0)82815E#0 0)66792E!01 !0)12866E!01 0)27127E!02 !0)50746E!03 0)16922E!04

2)48236 1)75 !0)31324E#00 0)10939E#0 !0)42136E!01 0)17593E!01 !0)76415E!02 !0)87861E#0 0)69214E!01 !0)13862E!01 0)29616E!02 !0)56088E!03 0)11483E!04

2)57278 1)85 !0)32576E#00 0)11781E#0 !0)46287E!01 0)19825E!01 !0)88151E!02 !0)92910E#0 0)71275E!01 !0)14832E!01 0)31945E!02 !0)61108E!03 0)33509E!05

2)66142 1)95 !0)33720E#00 0)12611E#0 !0)50377E!01 0)22094E!01 !0)10033E!01 !0)97963E#0 0)73005E!01 !0)15778E!01 0)34093E!02 !0)65765E!03 !0)7763E!05

2)74853 2)05 !0)34766E#00 0)13430E#0 !0)54392E!01 0)24390E!01 !0)11286E!01 !0)10302E#1 0)74429E!01 !0)16704E!01 0)36045E!02 !0)70036E!03 !0)2213E!04
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Figure 3. Basic function coe$cient contributions to the lowest "rst (a) and second (b) non-linear modes.

VIBRATION OF THIN ELASTIC SHELLS 935
ratio u*
nl
/u*

l
(u*

l
is the corresponding linear frequency parameter given in reference [33,

p. 39]) is also given in each Table. C
i
and B

i
represent the contribution of the transverse and

circumferential basic functions. It can be seen from Table 5(a) that the coe$cient
contributions depend on the frequency parameter and the rate of increase in non-linear
fundamental frequency with increasing displacement is very low at small amplitudes
being about 2% in frequency for an amplitude slightly exceeding 0)14 times the
thickness. For the second mode (Table 5(b)), the rate of increase in frequency is about 2%,
but for a displacement amplitude up to 0)08 times the shell thickness. This can lead
to the conclusion that the practical use of the linear frequencies for such amplitudes can be
of acceptable accuracy, although it must limit the frequency estimate accuracy to
a reasonable range. However, for displacement amplitudes greater than almost half of the
thickness, the increase of fundamental resonance frequencies is about 24%, and the
non-linear e!ect has to be taken into account. For the second mode, the same increase in
frequency is obtained for displacement amplitudes greater than, only about a quarter of the
thickness.

In Figure 3, the coe$cient contributions C
i

and B
i

of the transverse =* and
circumferential <* basic functions associated with the lowest "rst and second modes are
plotted versus non-dimensional lowest frequency parameter ratio u*

nl
/u*

l
(u*

l
is the

corresponding linear frequency parameter given in reference [33, p. 44]). It can be seen that
near to the linear frequency of a given mode only the corresponding basic function has
a signi"cant contribution. At large amplitudes, the higher order function contributions and
resonance frequencies increase.

4.6. TRANSVERSE AND CIRCUMFERENTIAL AMPLITUDE DEPENDENCE OF THE LOWEST

FIRST AND SECOND NON-LINEAR MODE SHAPES

The normalized tranverse=*/=*
max

and circumferential<*/<*
max

amplitude of the lowest
"rst and second mode shapes are plotted in Figures 4(a), (b) and 5(a), (b) respectively for the
values of the vibration transversal=*

max
and circumferential<*

max
amplitudes, and values of

u*
nl
/u*

l
are indicated in Tables 6(a), (b). It can be seen that all are amplitude dependent and

the non-linearity e!ect on the transverse displacement is more important than that obtained
for the circumferential displacement.



Figure 4. Lowest "rst (a) and second (b) non-linear modes for the maximum vibration amplitudes presented in
Table 6(a) for the "rst mode and Table 6(b) for the second mode.

Figure 5. Lowest "rst (a) and second (b) non-linear modes for the maximum vibration amplitudes presented in
Table 6(a) for the "rst mode and Table 6(b) for the second mode.

TABLE 6

Maximum normalized amplitude and frequency parameter ratio corresponding to the lowest
,rst and second non-linear mode shape and curvatues plotted in Figures 4 and 5 (b"0)05)

Curves =*
max

<*
max

u*
nl
/u*

l

(a) First mode
1 0)02821045 !0)02815642 1)00086935
2 0)74582949 !0)72833805 1)47092597
3 1)49561196 !1)42074741 2)29911678
4 2)26297701 !2)11159193 3)20647782
5 3)03809808 !2)80352682 4)14162750

(b) Second mode
1 0)02766874 !0)00178890 1)00228272
2 0)62406954 !0)05626903 2)04326994
3 1)28088628 !0)10706270 3)14706920
4 1)99172875 !0)15198154 4)14841217
5 2)72706270 !0)19385251 4)16602541
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4.7. CIRCUMFERENTIAL NODAL PATTERNS OF THE LOWEST FIRST AND SECOND

NON-LINEAR MODE SHAPES: COMPARISON WITH THE LINEAR CASE

As has been outlined in reference [12], the newcomer to the subject of shell vibration is
surprised to "nd that the fundamental (i.e., lowest frequency) mode of a circular cylindrical
shell typically includes many waves around its circumference. In the present work, the
fundamental linear mode is given by=* (y*)"(C

i
/h)cos(iy*), when the motion is primarily

radial, in which i"1 and y* varies over the range [!n/2, 3n/2]. This mode is represented in
Figure 6, for thickness to radius ratios of 0)05 and 0)09, and for non-dimensional vibration
amplitudes equal to 2)05; 5)05 and 7)55, by solid thin lines. The fundamental non-linear
modes are represented in the same Figure by dashed lines for the same thickness to radius
ratios and vibration amplitudes. It can be seen that this mode is not symmetric and at time
t at which cosut is positive, all points on the right side of the cylinder (AB C) have
a positive radial displacement (w*(y*)"cos y* is positive for y* between !n/2 and n/2)
while all points of the left side (C B@ A) have a negative radial displacement (w*(y*)"cos y*
is negative for y* between!n/2 and n/2). The nodal points A and C have always zero radial
displacement. As may be expected, at large vibration amplitudes, the "rst non-linear mode
exhibits a slight deformation for small values of b and C

1
(Figure 6(a) corresponding to 0)05

and 2)55 for example), which becomes more pronounced for higher values of b and C
1

(Figure 6(a) corresponding to 0)09 and 7)55 for example), particularly at points
corresponding to y*"0 and n. Similarly, the circumferential nodal patterns of the second
non-linear mode shape, when the motion is primarily radial, are represented in Figure 7, for
thickness to radius ratios equal to 0)05 and 0)09, and for non-dimensional vibration
amplitudes equal to 2)55; 5)05 and 7)55, by dashed lines. The form of the second non-linear
Figure 6. Non-linear (dashed lines) and linear (thin solid lines) circumferential nodal patterns of the lowest "rst
mode shapes for thickness to radius ratios b"0)05 and 0)09, and non-dimensional vibration amplitude C

1
"2)55;

5)05 and 7)55.



Figure 7. Non-linear (dashed lines) and lines (thin solid lines) circumferential nodal patterns of the lowest
second mode shapes for thickness to radius ratios b"0)05 and 0)09, and non-dimensional vibration amplitude
C

1
"2)55; 5)05 and 7)55.
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mode is symmetric and has four nodal points (ABCD) which have always zero radial
displacement. It can be seen in all these Figures that the radial displacement is positive
when the circumferential co-ordinate y* varies over the range [!n/4, n/4] and
[3n/4, 5n/4], while all points in the ranges [n/4, 3n/4] and [5n/4, !n/4] have a negative
radial displacement. As has been observed for the "rst non-linear mode, the form of the
second non-linear mode exhibits little deformation for small values of b and C

2
(Figure 7(a)

corresponding to 0)05 and 2)55 for example), and the deformation becomes pronounced for
higher values of b (Figure 7(f) corresponding to 0)09 and 7)55 for example), in particular, at
points corresponding to y*"n/2 and !n/2.

4.8. ANALYSIS OF AXIAL, BENDING AND TOTAL STRESSES ASSOCIATED WITH THE LOWEST

FIRST AND SECOND NON-LINEAR MODE SHAPE

The non-dimensional axial, bending and total stress distributions along the cylinder
external circumference, associated with the "rst and second non-linear modes are plotted in
Figures 8(a), (b), 9(a), (b) and 10(a), (b) respectively, for various values of the vibration
amplitude. It can be observed, for the "rst non-linear mode, that the axial and total stresses
exhibit two maxima at points y*"n/2 and 3n/2 and two minima at points y*"2n and
y*"n (Figures 8(a) and 10(a) respectively), and the bending stress exhibits one maximum at
point y*"2n and one minimum at point y*"n (Figure 9(a)). Similarly, for the second
non-linear mode, the axial, bending and total stresses present two maxima at points y*"2n
and y"n and two minima at points y*"n/2 and y"3n/2 (Figures 8(b), 9(b) and 10(b)
respectively).



Figure 8. Non-dimensional bending stress distribution along the shell circumference for the lowest "rst (a) and
second (b) non-linear mode for vibration amplitudes equal to curve (1); 0)05, curve (2); 1)30, curve (3); 2)55, curve (4);
3)80, curve (5); 5)05.

Figure 9. E!ect of large vibration amplitudes on the non-dimensional bending stress corresponding to the
lowest "rst (a) and second (b) modes at shell circumference points 0)5 and 0)25 respectively.
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The dependence of the non-dimensional non-linear and linear total stresses, computed at
point y*"2n of the shell external circumference, (i.e., z"h/2), on the amplitude of
vibration is plotted in Figures 11(a), (b), respectively, for both the lowest "rst and second
modes. The linear results were obtained from the present analysis with the non-linear
tensors b*

ijkl
, b*1

ijk
and b*2

ijk
omitted. It can be seen that all curves show amplitude dependence

of the stress distribution, and exhibit clearly a high increase of the total stress, compared
with the rate of increase expected in the linear theory. Comparing the total stresses
corresponding to the "rst mode obtained when the displacement amplitude C

1
increased

from 1 to 4 times the shell thickness, which have the values of 0)000774 and 0)00473 at point
y*"2n (Figure 11(a)) it appears that the rate of increase due to the non-linear e!ects is
53)3% higher than that predicted in the linear theory. Considering the second mode, the
associated bending stress at the point y*"2n of the shell increased from 0)0262 to 0)116
when the displacement amplitude C

2
increased from 1 to 4 times the thickness

(Figure 11(b)). This corresponds to a rate of increase which is 122)5% higher than that
predicted by the linear theory.



Figure 10. Non-dimensional total stress distribution along the cylinder external circumference, corresponding
to the lowest "rst (a) and second (b) non-linear mode shapes for vibration amplitudes equal to curve (1); 0.05, curve
(2); 1.30, curve (3); 2.55, curve (4); 3.8, curve (5); 5.05.

Figure 11. Increase of total stress with increase of vibration amplitude at point of the cylinder external
circumference y*"1, corresonding to the lowest "rst (a) and second (b) mode shapes. Comparison with the
non-linear and linear cases.
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5. CONCLUSIONS

The non-linear free response of a circular cylindrical shell of in"nite length has been
examined by a theoretical model based on Hamilton's principle and spectral analysis, in
order to determine the e!ect of large vibration amplitudes on the "rst and second coupled
transverse}circumferential mode shapes and their corresponding natural frequencies. The
coe$cient contributions of the transverse and circumferential basic functions corresponding
to the lowest frequencies has been determined. The circumferential nodal patterns of the
lowest mode shapes and the associated axial, bending and total stress distributions along the
cylinder external circumference were studied for various amplitudes of vibration. The validity
of the theory and of the numerical results obtained has been established by comparison with
previous linear analysis when the vibration amplitudes are very small, with the available
previous non-linear results based on the single-mode approach.

The results obtained for the "rst mode have shown that the rate of increase is about 2% in
non-linear frequency for an amplitude slightly exceeding 0)14 times the shell thickness. The
same rate of increase has been obtained for the second mode shape but for an amplitude up
to 0)08 times the shell thickness. This leads to the conclusion that the practical use of the
linear frequencies for such amplitudes can be of acceptable accuracy, although it must limit
the frequency estimate accuracy to a reasonable range. However, for displacement
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amplitudes greater than almost half of the thickness, the increase of fundamental resonance
frequencies is about 24% for the "rst mode, and the non-linear e!ect has to be taken into
account. For the second mode, the same increase in frequency is obtained for displacement
amplitudes greater than only about a quarter of the thickness.

It was also shown that, at large vibration amplitudes, the form of the lowest "rst
non-linear mode exhibits a slight deformation for small values of thickness to radius ratio
b and vibration amplitude C

1
, and becomes pronounced for higher values, particularly at

points corresponding to y*"0 and n. Similarly, the circumferential nodal patterns of the
lowest second non-linear mode shape also exhibits little deformation for small b and C

2
,

and become pronounced for higher values, particularly at points corresponding to y*"n/2
and !n/2.

Regarding the e!ect of large vibration amplitudes on the axial, bending and total stress
distributions along the cylinder external circumference, associated with these modes, it
appears that for the "rst mode, the axial and total stresses are concentrated at four points:
n/2, 3n/2, 2n and n, and the bending stress is concentrated at two points: 2n and n. For the
second mode, the axial, bending and total stresses are concentrated at four points: 2n, n, n/2
and 3n/2. If is of interest also to note that the rates of increase in the total stress due to the
non-linearity e!ects for the "rst and second modes is 53 and 122)5% respectively, higher
than that predicted in the linear theory, when the displacement amplitude C

1
and C

2
respectively, increase from 1 to 4 times the shell thickness. In both cases, it can be concluded
that the non-linearity can a!ect signi"cantly the total stresses in such types of structure and
will certainly modify the predicted fatigue life.

It appears from the present work that the model developed in references [29}32] can be
applied not only to beams and plates, but also to shell-type structures, and allows the "rst
and higher order non-linear modes of circular cylindrical shells of in"nite length to be
estimated quite easily and can be looked upon as an extension, based on a quite simple
formulation, of the classical linear eigenvalue problem for free vibration of shells, with
a multi-mode approach, with various complicated boundary conditions such as simply
supported ends and clamped ends. A parallel extension is being developed for such
structures made of new composite materials which will be presented later.
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APPENDIX A: NOMENCLATURE

<
b
, <

m
, < bending, membrane and total strain energy respectively

¹ kinetic energy
y circumferential position co-ordinate
h shell thickness
R shell radius
E Young's modulus
o mass density
b thickness to radius ratio h/R
k
ij
, m

ji
, b

ijk
, b

ijkl
general terms for the rigidity tensors, the mass tensors, the third non-linearity
tensors, and the fourth non-linearity tensors respectively.

k*
ij
, n*

ji
, b*

ijk
, b*

ijkl
general terms for the non-dimensional rigidity tensor, the mass tensor, the third
non-linearity tensors, and the fourth non-linearity tensors respectively

<(y, t) circumferential displacement at point y on the shell, <(y, t)"< (y)cosut
=(y, t) transverse displacement at point y on the shell,=(y, t)"= (y)cosut
C

i
, B

i
(i"1,2, n) coe$cient contributions of the transversal and circumferential basic functions,

respectively:= (y)"C
i
=

i
(y) and <(y)"B

i
<

i
(y)

u
r

non-linear lowest frequency parameter
u*

r
non-dimensional lowest frequency parameter corresponding to u

ru
c

non-linear highest frequency parameter
u*

c
non-dimensional highest frequency parameter corresponding to u

cu*
nl
/u*

l
non-dimensional lowest frequency parameter ratio

u*
l

the corresponding lowest linear frequency parameter given in reference [33]
[B] column matrix [B]T"[B

1
, B

2
,2,B

n
]

[C] column matrix [C]T"[C
1
, C

2
,2,B

n
]

[K], [M], [b] rigidity, mass and non-linear matrices respectively
p, p* stress and non-dimensional stresses respectively
e0
i

(i"x, y, z), i
y

in-plane at the mid-surface and bending curvatures respectively the star
indicates non-dimensional parameters
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